NCERT Solutions Maths Exercise 11.1 Class 9 Chapter 11 Surface Areas and Volumes PDF (2024)

Exercise 11.1

1. Diameter of the base of a cone is $\text{10}\text{.5 cm}$ and its slant height is $\text{10 cm}$. Find its curved surface area. $\left[ \text{Assume }\!\!\pi\!\!\text{ = }\frac{\text{22}}{\text{7}} \right]$

Ans:

We are Given the Following:

The slant height $\left( \text{l} \right)$ of the cone $\text{= 10 cm}$

The diameter of the base of cone $\text{= 10}\text{.5 cm}$

So, the radius $\left( \text{r} \right)$ of the base of cone $\text{= }\frac{\text{10}\text{.5}}{\text{2}}\text{ cm = 5}\text{.25 cm}$

The curved surface area of cone, $\text{A = }\!\!\pi\!\!\text{ rl}$

$\Rightarrow \text{A = }\left( \frac{\text{22}}{\text{7}}\text{ }\!\!\times\!\!\text{ 5}\text{.25 }\!\!\times\!\!\text{ 10} \right)\text{ c}{{\text{m}}^{\text{2}}}$

$\Rightarrow \text{A = }\left( \text{22 }\!\!\times\!\!\text{ 0}\text{.75 }\!\!\times\!\!\text{ 10} \right)\text{ c}{{\text{m}}^{\text{2}}}$

$\Rightarrow \text{A = 165 c}{{\text{m}}^{\text{2}}}$

Therefore, the curved surface area of the cone is $\text{165 c}{{\text{m}}^{\text{2}}}$.

2. Find the total surface area of a cone, if its slant height is $\text{21 m}$and diameter of its base is $\text{24 m}$. $\left[ \text{Assume }\!\!\pi\!\!\text{ = }\frac{\text{22}}{\text{7}} \right]$

Ans:

We are Given the Following:

The slant height $\left( \text{l} \right)$ of the cone $\text{= 21 m}$

The diameter of the base of cone $\text{= 24 m}$

So, the radius $\left( \text{r} \right)$ of the base of cone $\text{= }\frac{\text{24}}{\text{2}}\text{ m = 12 m}$

The total surface area of cone, $\text{A = }\!\!\pi\!\!\text{ r}\left( \text{l + r} \right)$

$\Rightarrow \text{A = }\left( \frac{\text{22}}{\text{7}}\text{ }\!\!\times\!\!\text{ 12 }\!\!\times\!\!\text{ }\left( \text{21 + 12} \right) \right)\text{ }{{\text{m}}^{\text{2}}}$

$\Rightarrow \text{A = }\left( \frac{\text{22}}{\text{7}}\text{ }\!\!\times\!\!\text{ 12 }\!\!\times\!\!\text{ 33} \right)\text{ }{{\text{m}}^{\text{2}}}$

$\Rightarrow \text{A = 1244}\text{.57 }{{\text{m}}^{\text{2}}}$

Therefore, the total surface area of the cone is $\text{1244}\text{.57 }{{\text{m}}^{\text{2}}}$.

3. Curved surface area of a cone is $\text{308 c}{{\text{m}}^{\text{2}}}$ and its slant height is $\text{14 cm}$. Find

i. Radius of the Base

Ans:

It is given that the slant height $\left( \text{l} \right)$ of the cone $\text{= 14 cm}$

The curved surface area of the cone $\text{= 308 c}{{\text{m}}^{\text{2}}}$

Let us assume the radius of base of cone be $\text{r}$.

We know that curved surface area of the cone $\text{= }\!\!\pi\!\!\text{ rl}$

$\therefore \text{ }\!\!\pi\!\!\text{ rl = 308 c}{{\text{m}}^{\text{2}}}$

$\Rightarrow \left( \frac{\text{22}}{\text{7}}\text{ }\!\!\times\!\!\text{ r }\!\!\times\!\!\text{ 14} \right)\text{ cm = 308 c}{{\text{m}}^{\text{2}}}$

$\Rightarrow \text{r = }\frac{\text{308}}{\text{44}}\text{ cm}$

$\Rightarrow \text{r = 7 cm}$

Hence, the radius of the base is $\text{7 cm}$.

ii. Total Surface Area of the Cone. $\left[ \text{Assume }\!\!\pi\!\!\text{ = }\frac{\text{22}}{\text{7}} \right]$

Ans:

The total surface area of the cone is the sum of its curved surface area and the area of the base.

Total surface area of cone, $\text{A = }\!\!\pi\!\!\text{ rl + }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{2}}}$

$\Rightarrow \text{A = }\left[ \text{308 + }\frac{\text{22}}{\text{7}}\text{ }\!\!\times\!\!\text{ }{{\left( \text{7} \right)}^{\text{2}}} \right]\text{ c}{{\text{m}}^{\text{2}}}$

$\Rightarrow \text{A = }\left[ \text{308 + 154} \right]\text{ c}{{\text{m}}^{\text{2}}}$

$\Rightarrow \text{A = 462 c}{{\text{m}}^{\text{2}}}$

Hence, the total surface area of the cone is $\text{462 c}{{\text{m}}^{\text{2}}}$.

4. A conical tent is $\text{10 m}$ high and the radius of its base is $\text{24 m}$. Find

i. slant height of the tent

Ans:

NCERT Solutions Maths Exercise 11.1 Class 9 Chapter 11 Surface Areas and Volumes PDF (1)

From the figure we can say that $\text{ABC}$ is a conical tent.

It is given that the height $\left( \text{h} \right)$ of conical tent $\text{= 10 m}$

The radius $\left( \text{r} \right)$ of conical tent $\text{= 24 m}$

Let us assume the slant height as $\text{l}$.

In $\text{ }\!\!\Delta\!\!\text{ ABD}$, we will use Pythagorean Theorem.

$\therefore \text{A}{{\text{B}}^{\text{2}}}\text{ = AD}{{\text{ }}^{\text{2}}}\text{ + B}{{\text{D}}^{\text{2}}}$

$\Rightarrow {{\text{l}}^{\text{2}}}\text{ = }{{\text{h}}^{\text{2}}}\text{ + }{{\text{r}}^{\text{2}}}$

\[\Rightarrow {{\text{l}}^{\text{2}}}\text{ = }{{\left( \text{10 m} \right)}^{\text{2}}}\text{ + }{{\left( \text{24 m} \right)}^{\text{2}}}\]

$\Rightarrow {{\text{l}}^{\text{2}}}\text{ = 676 }{{\text{m}}^{\text{2}}}$

$\Rightarrow \text{l = 26 m}$

The slant height of the tent is $\text{26 m}$.

ii. cost of canvas required to make the tent, if cost of $\text{1 }{{\text{m}}^{\text{2}}}$ canvas is $\text{Rs}\text{. 70}$. $\left[ \text{Assume }\!\!\pi\!\!\text{ = }\frac{\text{22}}{\text{7}} \right]$

Ans:

The curved surface area of the tent, $\text{A = }\!\!\pi\!\!\text{ rl}$

$\Rightarrow \text{A = }\left( \frac{\text{22}}{\text{7}}\text{ }\!\!\times\!\!\text{ 24 }\!\!\times\!\!\text{ 26} \right)\text{ }{{\text{m}}^{\text{2}}}$

$\Rightarrow \text{A = }\left( \frac{13728}{7} \right)\text{ }{{\text{m}}^{\text{2}}}$

It is given that the cost of $\text{1 }{{\text{m}}^{\text{2}}}$ of canvas $\text{= Rs}\text{. 70}$

So, the cost of $\frac{13728}{7}\text{ }{{\text{m}}^{\text{2}}}$ canvas $\text{= Rs}\text{. }\left( \frac{\text{13728}}{\text{7}}\text{ }\!\!\times\!\!\text{ 70} \right)\text{ = Rs}\text{. 137280}$

Hence, the cost of canvas required to make the tent is $\text{Rs}\text{. 137280}$.

5. What length of tarpaulin $\text{3 m}$ wide will be required to make conical tent of height $\text{8 m}$ and base radius $\text{6 m}$? Assume that the extra length of material that will be required for stitching margins and wastage in cutting is approximately $\text{20 cm}$. $\left[ \text{Use }\!\!\pi\!\!\text{ = 3}\text{.14} \right]$

Ans:

We are Given the Following:

The base radius $\left( \text{r} \right)$ of tent $\text{= 6 m}$

The height $\left( \text{h} \right)$ of tent $\text{= 8 m}$

So the slant height of the tent, $\text{l = }\sqrt{{{\text{r}}^{\text{2}}}\text{ + }{{\text{h}}^{\text{2}}}}$

$\Rightarrow \text{l = }\left( \sqrt{{{\text{6}}^{\text{2}}}\text{ + }{{\text{8}}^{\text{2}}}} \right)\text{ m}$

$\Rightarrow \text{l = }\left( \sqrt{\text{100}} \right)\text{ m}$

$\Rightarrow \text{l = 10 m}$

The curved surface area of the tent, $\text{A = }\!\!\pi\!\!\text{ rl}$

$\Rightarrow \text{A = }\left( \text{3}\text{.14 }\!\!\times\!\!\text{ 6 }\!\!\times\!\!\text{ 10} \right)\text{ }{{\text{m}}^{\text{2}}}$

$\Rightarrow \text{A = 188}\text{.4 }{{\text{m}}^{\text{2}}}$

It is give the width of tarpaulin $\text{= 3 m}$

Let us assume the length of the tarpaulin sheet required be $\text{x}$.

It is given that there will be a wastage of $\text{20 cm}$.

So, the new length of the sheet $\text{=}\left( \text{x - 0}\text{.2} \right)\text{ m}$

We know that the area of the rectangular sheet required will be the same as the curved surface area of the tent.

$\therefore \left[ \left( \text{x - 0}\text{.2} \right)\text{ }\!\!\times\!\!\text{ 3} \right]\text{ m = 188}\text{.4 }{{\text{m}}^{\text{2}}}$

$\Rightarrow \text{x - 0}\text{.2 m = 62}\text{.8 m}$

$\Rightarrow \text{x = 63 m}$

The length of tarpaulin sheet required is $\text{63 m}$.

6. The slant height and base diameter of a conical tomb are $\text{25 m}$ and $\text{14 m}$ respectively. Find the cost of white-washing its curved surface at the rate of $\text{Rs}\text{. 210}$ per $\text{100 }{{\text{m}}^{\text{2}}}$. $\left[ \text{Assume }\!\!\pi\!\!\text{ = }\frac{\text{22}}{\text{7}} \right]$

Ans:

We are Given the Following:

The base radius $\left( \text{r} \right)$ of tomb $\text{= 7 m}$

The slant height $\left( \text{l} \right)$ of tomb $\text{= 25 m}$

The curved surface area of the conical tomb, $\text{A = }\!\!\pi\!\!\text{ rl}$

$\Rightarrow \text{A = }\left( \frac{22}{7}\text{ }\!\!\times\!\!\text{ 7 }\!\!\times\!\!\text{ 25} \right)\text{ }{{\text{m}}^{\text{2}}}$

$\Rightarrow \text{A = 550 }{{\text{m}}^{\text{2}}}$

It is given that the cost of white-washing $\text{1 }{{\text{m}}^{\text{2}}}$ area $\text{= Rs}\text{. 210}$

So, the cost of white-washing $550\text{ }{{\text{m}}^{\text{2}}}$ area $\text{= Rs}\text{. }\left( \frac{\text{210}}{\text{100}}\text{ }\!\!\times\!\!\text{ 550} \right)\text{ = Rs}\text{. 1155}$

Hence, the cost of white-washing the curved surface area of a conical tomb is $\text{Rs}\text{. 1155}$.

7. A joker’s cap is in the form of a right circular cone of base radius $\text{7 cm}$ and the height $\text{24 cm}$. Find the area of the sheet required to make $\text{10}$ such caps. $\left[ \text{Assume }\!\!\pi\!\!\text{ = }\frac{\text{22}}{\text{7}} \right]$

Ans:

We are Given the Following:

The base radius $\left( \text{r} \right)$ of conical cap $\text{= 7 cm}$

The height $\left( \text{h} \right)$ of conical cap $\text{= 24 cm}$

So the slant height of the tent, $\text{l = }\sqrt{{{\text{r}}^{\text{2}}}\text{ + }{{\text{h}}^{\text{2}}}}$

$\Rightarrow \text{l = }\left( \sqrt{{{\text{7}}^{\text{2}}}\text{ + 2}{{\text{4}}^{\text{2}}}} \right)\text{ cm}$

$\Rightarrow \text{l = }\left( \sqrt{625} \right)\text{ cm}$

$\Rightarrow \text{l = 25 cm}$

The curved surface area of one conical cap, $\text{A = }\!\!\pi\!\!\text{ rl}$

$\Rightarrow \text{A = }\left( \frac{22}{7}\text{ }\!\!\times\!\!\text{ 7 }\!\!\times\!\!\text{ 25} \right)\text{ c}{{\text{m}}^{\text{2}}}$

$\Rightarrow \text{A = 550 c}{{\text{m}}^{\text{2}}}$

So, the curved surface area of $\text{10}$ conical caps $\text{= }\left( \text{550 }\!\!\times\!\!\text{ 10} \right)\text{ c}{{\text{m}}^{\text{2}}}\text{ = 5500 c}{{\text{m}}^{\text{2}}}$

Therefore, the total area of the sheet required is $\text{5500 c}{{\text{m}}^{\text{2}}}$.

8. A bus stop is barricaded from the remaining part of the road, by using $\text{50}$ hollow cones made of recycled cardboard. Each cone has a base diameter of $\text{40 cm}$ and height $\text{1 m}$. If the outer side of each of the cones is to be painted and the cost of painting is $\text{Rs}\text{. 12}$ per ${{\text{m}}^{\text{2}}}$, what will be the cost of painting all these cones?

$\left[ \text{Use }\!\!\pi\!\!\text{ = 3}\text{.14 and take }\sqrt{\text{1}\text{.04}}\text{=1}\text{.02} \right]$

Ans:

We are Given the Following:

The base radius $\left( \text{r} \right)$ of cone $\text{= }\frac{\text{40}}{\text{2}}\text{ = 20 cm = 0}\text{.2 m}$

The height $\left( \text{h} \right)$ of cone $\text{= 1 m}$

So the slant height of the cone, $\text{l = }\sqrt{{{\text{r}}^{\text{2}}}\text{ + }{{\text{h}}^{\text{2}}}}$

$\Rightarrow \text{l = }\left( \sqrt{{{\left( \text{0}\text{.2} \right)}^{\text{2}}}\text{ + }{{\left( \text{1} \right)}^{\text{2}}}} \right)\text{ m}$

$\Rightarrow \text{l = }\left( \sqrt{1.04} \right)\text{ m}$

$\Rightarrow \text{l = 1}\text{.02 m}$

The curved surface area of one cone, $\text{A = }\!\!\pi\!\!\text{ rl}$

$\Rightarrow \text{A = }\left( \text{3}\text{.14 }\!\!\times\!\!\text{ 0}\text{.2 }\!\!\times\!\!\text{ 1}\text{.02} \right)\text{ }{{\text{m}}^{\text{2}}}$

$\Rightarrow \text{A = 0}\text{.64056 c}{{\text{m}}^{\text{2}}}$

So, the curved surface area of $\text{50}$ cones $\text{= }\left( \text{50 }\!\!\times\!\!\text{ 0}\text{.64056} \right)\text{ }{{\text{m}}^{\text{2}}}\text{ = 32}\text{.028 }{{\text{m}}^{\text{2}}}$

It is given that the cost of painting $\text{1 }{{\text{m}}^{\text{2}}}$ area $\text{= Rs}\text{. 12}$

So, the cost of painting $32.028\text{ }{{\text{m}}^{\text{2}}}$ area $\text{= Rs}\text{. }\left( \text{32}\text{.028 }\!\!\times\!\!\text{ 12} \right)\text{ = Rs}\text{. 384}\text{.336}$

We can also write the cost approximately as $\text{Rs}\text{. 384}\text{.34}$.

Therefore, the cost of painting all the hollow cones is $\text{Rs}\text{. 384}\text{.34}$.

Conclusion

NCERT of class 9 maths surface area and volume exercise 11.1, provides a clear understanding of calculating the surface areas of geometric shapes, specifically right circular cones. Students should focus on grasping the concepts of curved surface area and total surface area to solve related problems effectively. Vedantu’s detailed solutions offer step-by-step explanations that simplify complex problems. Practicing these exercises enhances problem-solving skills and builds confidence, helping students perform well in their Class 9 Maths exams.

Class 9 Maths Chapter 11: Exercises Breakdown

Exercise

Number of Questions

Exercise 11.2

9 Questions & Solutions (4 Short Answers, 5 Long Answers)

Exercise 11.3

9 Questions & Solutions (9 Long Answers)

Exercise 11.4

10 Questions & Solutions (5 Short Answers, 5 Long Answers)

CBSE Class 9 Maths Chapter 11 Other Study Materials

S. No

Important Links for Chapter 11 Surface Areas and Volumes

1

Class 9 Surface Areas and Volumes Important Questions

2

Class 9 Surface Areas and Volumes Revision Notes

3

Class 9 Surface Areas and Volumes Important Formulas

4

Class 9 Surface Areas and Volumes NCERT Exemplar Solution

5

Class 9 Surface Areas and Volumes RD Sharma Solutions

6

Class 9 Surface Areas and Volumes RS Aggarwal Solutions

Chapter-Specific NCERT Solutions for Class 9 Maths

Given below are the chapter-wise NCERT Solutions for Class 9 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.

NCERT Solutions Class 9 Maths Chapter-wise List

Chapter 1 - Number Systems

Chapter 2 - Polynomials

Chapter 3 - Coordinate Geometry

Chapter 4 - Linear Equations in Two Variables

Chapter 5 - Introduction to Euclids Geometry

Chapter 6 - Lines and Angles

Chapter 7 - Triangles

Chapter 8 - Quadrilaterals

Chapter 9 - Circles

Chapter 10 - Heron's Formula

Chapter 11 - Surface Areas and Volumes

Chapter 12 - Statistics

NCERT Solutions Maths Exercise 11.1 Class 9 Chapter 11 Surface Areas and Volumes PDF (2024)
Top Articles
Spyine Review: The Best GPS Location Tracking App - IP With Ease
Überprüfung der Spyine-App: Wie funktioniert es?
Tripadvisor Antigua Forum
Ohio State Football Wiki
NBA 2K25 Best LaMelo Ball Build: 4-WAY GOD - Magic Game World
Circle L Bassets
Indiana girl set for final surgery 5 years after suffering burns in kitchen accident
Tyson Employee Paperless
Muckleshoot Bingo Calendar
Craigslist Furniture By Owner Dallas
Topeka Pets Craigslist
Www Craigslist Com Pueblo Co
What Does Purge Mods Do In Vortex
Solarmovies.ma
Inloggen bij AH Sam - E-Overheid
Slmd Skincare Appointment
How to find cash from balance sheet?
Skyward Weatherford Isd Login
4 Star Brewery
M3Gan Showtimes Near Regal City North
Shs Games 1V1 Lol
Creigs List Maine
M Life Insider
Cal Poly San Luis Obispo Catalog
Tamilrockers.com 2022 Isaimini
Www.publicsurplus.com Motor Pool
New Orleans Magazine | Dining, Entertainment, Homes, Lifestyle and all things NOLA
Retire Early Wsbtv.com Free Book
11 Nightlife Spots To Experience In Salem, Oregon
What to know about Canada and China's foreign interference row
Venus Nail Lounge Lake Elsinore
Iehp Dr List
Susan Dey Today: A Look At The Iconic Actress And Her Legacy
Craiglist.nj
Courierpress Obit
Woude's Bay Bar Photos
France 2 Journal Télévisé 20H
Bing Chilling Copypasta - Ricky Spears
Embu village mines precious coltan for years 'without knowing its value’
Unraveling The Mystery Behind Campinos Leaked: A Deep Dive
Business Banking Online | Huntington
Filmy4 Web Xyz.com
Goodwill Southern California Store & Donation Center Montebello Photos
Fact checking debate claims from Trump and Harris' 2024 presidential faceoff
Grayson County Craigslist
Gym Membership & Workout Classes in Lafayette IN | VASA Fitness
Locate Td Bank Near Me
Vidant My Chart Login
Kgtv Tv Listings
Jenny Babas Nsfw
Union Corners Obgyn
Auctionzipauctions
Latest Posts
Article information

Author: Rubie Ullrich

Last Updated:

Views: 5249

Rating: 4.1 / 5 (52 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Rubie Ullrich

Birthday: 1998-02-02

Address: 743 Stoltenberg Center, Genovevaville, NJ 59925-3119

Phone: +2202978377583

Job: Administration Engineer

Hobby: Surfing, Sailing, Listening to music, Web surfing, Kitesurfing, Geocaching, Backpacking

Introduction: My name is Rubie Ullrich, I am a enthusiastic, perfect, tender, vivacious, talented, famous, delightful person who loves writing and wants to share my knowledge and understanding with you.